Chiral quantum heating and cooling with an optically controlled ion

Physical principle for parametric loops in the vicinity of a LEP in the parameter space of a single trapped ion quantum heat engine.

USA, August 31, 2024 /EINPresswire.com/ — Exploring quantum heat engines is vital for designing highly efficient power systems beyond classical limits and for understanding quantum thermodynamics. Scientists demonstrate the first implementation of chiral thermodynamic cycles and quantum state transfers in a trapped ion by dynamically encircling a closed loop excluding Liouvillian exceptional points. Their study contributes to understanding non-Hermitian quantum systems with quantum jumps and bridges chirality and quantum thermodynamics, opening avenues for future research and technological innovations in developing chiral quantum devices.

Heat engines, converting heat into useful work, are vital in modern society. With advances in nanotechnology, exploring quantum heat engines (QHEs) is crucial for designing efficient systems and understanding quantum thermodynamics. QHEs, operating as open quantum systems, exchange energy with external thermal baths, leading to quantum jumps. Therefore, the dynamics of QHEs can only be fully described and well understood using Liouvillian exceptional points (LEPs) rather than traditional Hamiltonian EPs, especially for qubit-based QHEs. However, distinct from extensive studies on Hamiltonian EPs, LEPs and the related effects remain largely unexplored in quantum systems, particularly in quantum thermodynamics. LEPs offer a new approach by describing physical properties induced by quantum jumps.

In a new paper (https://doi.org/10.1038/s41377-024-01483-5) published in Light: Science & Applications, a team led by Professor Mang Feng from the Innovation Academy for Precision Measurement Science and Technology of the Chinese Academy of Sciences, in collaboration with Prof. Hui Jing from Hunan Normal University and Prof. Şahin K. Özdemir from Pennsylvania State University, demonstrates chiral quantum heating and cooling and quantum state transfer using an optically controlled ion.

The work reveals chiral thermodynamic properties of quantum systems with non-Hermitian dynamics by dynamically encircling a closed loop without LEP involved. The encircling direction around the closed loop influences whether the system is acted as a heat engine or refrigerator. Their study highlights the role of non-adiabatic transitions and the Landau-Zener-Stückelberg process in achieving chiral operation. This experiment connects, for the first time, the LZS process for chirality with LEP-related thermodynamic effects. The experimental results, arising from the topological landscape of the Riemann surfaces, may open up new avenues in understanding chiral and topological behaviors in non-Hermitian systems and bridging chirality and quantum thermodynamics.

“Our findings reveal that chirality and heat exchange in our quantum system are linked to the encircling direction of the closed loops without the LEP. We show clearly that asymmetric mode conversion is directly related to the topological landscape of the Riemann surfaces and not necessarily to encircling an LEP of this quantum system, supporting previous reports for classical systems,” said Prof. Feng. “This experiment paves the way for new explorations in quantum thermodynamics and the development of more efficient quantum chiral devices.”

The team’s experiment also underscores the importance of LEPs in optimizing QHE dynamics and enhancing their efficiency. These insights could lead to advancements in various quantum technologies, including energy conversion systems and quantum computing.

DOI
10.1038/s41377-024-01483-5

Original Source URL
https://doi.org/10.1038/s41377-024-01483-5

Funding information
This work was supported by Special Project for Research and Development in Key Areas of Guangdong Province under Grant No. 2020B0303300001, by Guangdong Provincial Quantum Science Strategic Initiative under Grant No. GDZX2305004, by National Natural Science Foundation of China under Grant Nos. U21A20434, 92265107, 12074390, 11835011, by Key Lab of Guangzhou for Quantum Precision Measurement under Grant No.202201000010, by Postdoctoral Science Foundation of China under Grant No. 2022MT10881, and by Nansha Senior Leading Talent Team Technology Project under Grant No. 2021CXTD02. Ş.K.O acknowledges the support from Air Force Office of Scientific Research (AFOSR), Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202 and the AFOSR Award No. FA9550-18-1-0235.

Lucy Wang
BioDesign Research
email us here

Legal Disclaimer:

EIN Presswire provides this news content “as is” without warranty of any kind. We do not accept any responsibility or liability
for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this
article. If you have any complaints or copyright issues related to this article, kindly contact the author above.